VECA: A Method for Detecting Overfitting in Neural Networks (Student Abstract)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sensor-fusion method for detecting a speaking student

In this paper, we propose a method for detecting the location of the speaker that is a target of automatic video filming in distance learning and lecture archive. It is required that a face of a speaking student is filmed in a lecture video. For this purpose, it is necessary to detect the location of a speaker. An acoustic sensor such as a microphone array is used widely to detect the location ...

متن کامل

Dropout: a simple way to prevent neural networks from overfitting

Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly d...

متن کامل

On Method Overfitting

Benchmark problems should be hard. True. Methods for solving problems should be useful for more than just “beating” a particular benchmark. Truer still, we believe. In this paper, we examine the worth of the approach consisting of concentration on a particular set of benchmark problems, an issue raised by a recent paper by Ian Gent. We find that such a methodology can easily lead to publication...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2020

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v34i10.7167